207 research outputs found

    Passive PT -symmetric couplers without complex optical potentials

    Full text link
    © 2015 American Physical Society. In addition to the implementation of parity-time-(PT-) symmetric optical systems by carefully and actively controlling the gain and loss, we show that a 2×2 PT-symmetric Hamiltonian has a unitarily equivalent representation without complex optical potentials in the resulting optical coupler. Through the Naimark dilation in operator algebra, passive PT-symmetric couplers can thus be implemented with a refractive index of real values and asymmetric coupling coefficients. This opens up the possibility to implement general PT-symmetric systems with state-of-the-art asymmetric slab waveguides, dissimilar optical fibers, or cavities with chiral mirrors

    High-efficiency pharmacogenetic ablation of oligodendrocyte progenitor cells in the adult mouse CNS

    Get PDF
    Approaches to investigate adult oligodendrocyte progenitor cells (OPCs) by targeted cell ablation in the rodent CNS have limitations in the extent and duration of OPC depletion. We have developed a pharmacogenetic approach for conditional OPC ablation, eliminating >98% of OPCs throughout the brain. By combining recombinase-based transgenic and viral strategies for targeting OPCs and ventricular-subventricular zone (V-SVZ)-derived neural precursor cells (NPCs), we found that new PDGFRA-expressing cells born in the V-SVZ repopulated the OPC-deficient brain starting 12 days after OPC ablation. Our data reveal that OPC depletion induces V-SVZ-derived NPCs to generate vast numbers of PDGFRA+NG2+ cells with the capacity to proliferate and migrate extensively throughout the dorsal anterior forebrain. Further application of this approach to ablate OPCs will advance knowledge of the function of both OPCs and oligodendrogenic NPCs in health and disease

    Left sided inferior vena cava duplication and venous thromboembolism: case report and review of literature

    Get PDF
    The etiology of venous thromboembolism in young patients is frequently associated with hereditary coagulation abnormalities, immunologic diseases, and neoplasia. The advent of radiological advances, namely Computed Tomography (CT) scans and venography has identified vena cava malformations as a new etiologic factor worthy of consideration. In this case report, we describe the unusual occurrence of venous thromboembolism in association with a duplicated inferior vena cava. Duplications of the inferior vena cava (IVC) are seen with an incidence of 0.2% to 3.0% in the general population. Embryogenesis of the IVC is a complex process involving the intricate formation and regression of numerous anastomoses, potentially leading to various anomalies. We present a 23-year-old Caucasian woman with IVC duplication who developed a deep venous thrombosis and multiple pulmonary emboli. Anomaly of the IVC is a rare example of a congenital condition that predisposes to thromboembolism, presumably by favoring venous stasis. This diagnosis should be considered in patients under the age of 30 with spontaneous occurrence of blood clots

    One-dimensional Topological Edge States of Bismuth Bilayers

    Get PDF
    The hallmark of a time-reversal symmetry protected topologically insulating state of matter in two-dimensions (2D) is the existence of chiral edge modes propagating along the perimeter of the system. To date, evidence for such electronic modes has come from experiments on semiconducting heterostructures in the topological phase which showed approximately quantized values of the overall conductance as well as edge-dominated current flow. However, there have not been any spectroscopic measurements to demonstrate the one-dimensional (1D) nature of the edge modes. Among the first systems predicted to be a 2D topological insulator are bilayers of bismuth (Bi) and there have been recent experimental indications of possible topological boundary states at their edges. However, the experiments on such bilayers suffered from irregular structure of their edges or the coupling of the edge states to substrate's bulk states. Here we report scanning tunneling microscopy (STM) experiments which show that a subset of the predicted Bi-bilayers' edge states are decoupled from states of Bi substrate and provide direct spectroscopic evidence of their 1D nature. Moreover, by visualizing the quantum interference of edge mode quasi-particles in confined geometries, we demonstrate their remarkable coherent propagation along the edge with scattering properties that are consistent with strong suppression of backscattering as predicted for the propagating topological edge states.Comment: 15 pages, 5 figures, and supplementary materia

    Brain Stem Death as the Vital Determinant for Resumption of Spontaneous Circulation after Cardiac Arrest in Rats

    Get PDF
    BACKGROUND:Spontaneous circulation returns to less than half of adult cardiac arrest victims who received in-hospital resuscitation. One clue for this disheartening outcome arises from the prognosis that asystole invariably takes place, after a time lag, on diagnosis of brain stem death. The designation of brain stem death as the point of no return further suggests that permanent impairment of the brain stem cardiovascular regulatory machinery precedes death. It follows that a crucial determinant for successful revival of an arrested heart is that spontaneous circulation must resume before brain stem death commences. Here, we evaluated the hypothesis that maintained functional integrity of the rostral ventrolateral medulla (RVLM), a neural substrate that is intimately related to brain stem death and central circulatory regulation, holds the key to the vital time-window between cardiac arrest and resumption of spontaneous circulation. METHODOLOGY/PRINCIPAL FINDINGS:An animal model of brain stem death employing the pesticide mevinphos as the experimental insult in Sprague-Dawley rats was used. Intravenous administration of lethal doses of mevinphos elicited an abrupt cardiac arrest, accompanied by elevated systemic arterial pressure and anoxia, augmented neuronal excitability and enhanced microvascular perfusion in RVLM. This period represents the vital time-window between cardiac arrest and resumption of spontaneous circulation in our experimental model. Animals with restored spontaneous circulation exhibited maintained neuronal functionality in RVLM beyond this critical time-window, alongside resumption of baseline tissue oxygen and enhancement of local blood flow. Intriguingly, animals that subsequently died manifested sustained anoxia, diminished local blood flow, depressed mitochondrial electron transport activities and reduced ATP production, leading to necrotic cell death in RVLM. That amelioration of mitochondrial dysfunction and bioenergetic failure in RVLM by coenzyme Q10, the mobile electron carrier in mitochondrial respiratory chain, or oxygenation restored spontaneous circulation further established a causal relationship between functionality of RVLM and resumed spontaneous circulation after cardiac arrest. CONCLUSIONS/SIGNIFICANCE:We conclude that whereas necrotic cell death because of bioenergetic failure triggered by anoxia in RVLM, which precipitates brain stem death, negates resuscitation of an arrested heart, maintained functional integrity of this neural substrate holds the key to resumption of spontaneous circulation after cardiac arrest in rats

    An Improved PSO Algorithm for Generating Protective SNP Barcodes in Breast Cancer

    Get PDF
    BACKGROUND: Possible single nucleotide polymorphism (SNP) interactions in breast cancer are usually not investigated in genome-wide association studies. Previously, we proposed a particle swarm optimization (PSO) method to compute these kinds of SNP interactions. However, this PSO does not guarantee to find the best result in every implement, especially when high-dimensional data is investigated for SNP-SNP interactions. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we propose IPSO algorithm to improve the reliability of PSO for the identification of the best protective SNP barcodes (SNP combinations and genotypes with maximum difference between cases and controls) associated with breast cancer. SNP barcodes containing different numbers of SNPs were computed. The top five SNP barcode results are retained for computing the next SNP barcode with a one-SNP-increase for each processing step. Based on the simulated data for 23 SNPs of six steroid hormone metabolisms and signalling-related genes, the performance of our proposed IPSO algorithm is evaluated. Among 23 SNPs, 13 SNPs displayed significant odds ratio (OR) values (1.268 to 0.848; p<0.05) for breast cancer. Based on IPSO algorithm, the jointed effect in terms of SNP barcodes with two to seven SNPs show significantly decreasing OR values (0.84 to 0.57; p<0.05 to 0.001). Using PSO algorithm, two to four SNPs show significantly decreasing OR values (0.84 to 0.77; p<0.05 to 0.001). Based on the results of 20 simulations, medians of the maximum differences for each SNP barcode generated by IPSO are higher than by PSO. The interquartile ranges of the boxplot, as well as the upper and lower hinges for each n-SNP barcode (n = 3∼10) are more narrow in IPSO than in PSO, suggesting that IPSO is highly reliable for SNP barcode identification. CONCLUSIONS/SIGNIFICANCE: Overall, the proposed IPSO algorithm is robust to provide exact identification of the best protective SNP barcodes for breast cancer

    Ghrelin Indirectly Activates Hypophysiotropic CRF Neurons in Rodents

    Get PDF
    Ghrelin is a stomach-derived hormone that regulates food intake and neuroendocrine function by acting on its receptor, GHSR (Growth Hormone Secretagogue Receptor). Recent evidence indicates that a key function of ghrelin is to signal stress to the brain. It has been suggested that one of the potential stress-related ghrelin targets is the CRF (Corticotropin-Releasing Factor)-producing neurons of the hypothalamic paraventricular nucleus, which secrete the CRF neuropeptide into the median eminence and activate the hypothalamic-pituitary-adrenal axis. However, the neural circuits that mediate the ghrelin-induced activation of this neuroendocrine axis are mostly uncharacterized. In the current study, we characterized in vivo the mechanism by which ghrelin activates the hypophysiotropic CRF neurons in mice. We found that peripheral or intra-cerebro-ventricular administration of ghrelin strongly activates c-fos – a marker of cellular activation – in CRF-producing neurons. Also, ghrelin activates CRF gene expression in the paraventricular nucleus of the hypothalamus and the hypothalamic-pituitary-adrenal axis at peripheral level. Ghrelin administration directly into the paraventricular nucleus of the hypothalamus also induces c-fos within the CRF-producing neurons and the hypothalamic-pituitary-adrenal axis, without any significant effect on the food intake. Interestingly, dual-label immunohistochemical analysis and ghrelin binding studies failed to show GHSR expression in CRF neurons. Thus, we conclude that ghrelin activates hypophysiotropic CRF neurons, albeit indirectly

    Search for anomalous t t-bar production in the highly-boosted all-hadronic final state

    Get PDF
    A search is presented for a massive particle, generically referred to as a Z', decaying into a t t-bar pair. The search focuses on Z' resonances that are sufficiently massive to produce highly Lorentz-boosted top quarks, which yield collimated decay products that are partially or fully merged into single jets. The analysis uses new methods to analyze jet substructure, providing suppression of the non-top multijet backgrounds. The analysis is based on a data sample of proton-proton collisions at a center-of-mass energy of 7 TeV, corresponding to an integrated luminosity of 5 inverse femtobarns. Upper limits in the range of 1 pb are set on the product of the production cross section and branching fraction for a topcolor Z' modeled for several widths, as well as for a Randall--Sundrum Kaluza--Klein gluon. In addition, the results constrain any enhancement in t t-bar production beyond expectations of the standard model for t t-bar invariant masses larger than 1 TeV.Comment: Submitted to the Journal of High Energy Physics; this version includes a minor typo correction that will be submitted as an erratu

    Aggregation Pattern Transitions by Slightly Varying the Attractive/Repulsive Function

    Get PDF
    Among collective behaviors of biological swarms and flocks, the attractive/repulsive (A/R) functional links between particles play an important role. By slightly changing the cutoff distance of the A/R function, a drastic transition between two distinct aggregation patterns is observed. More precisely, a large cutoff distance yields a liquid-like aggregation pattern where the particle density decreases monotonously from the inside to the outwards within each aggregated cluster. Conversely, a small cutoff distance produces a crystal-like aggregation pattern where the distance between each pair of neighboring particles remains constant. Significantly, there is an obvious spinodal in the variance curve of the inter-particle distances along the increasing cutoff distances, implying a legible transition pattern between the liquid-like and crystal-like aggregations. This work bridges the aggregation phenomena of physical particles and swarming of organisms in nature upon revealing some common mechanism behind them by slightly varying their inter-individual attractive/repulsive functions, and may find its potential engineering applications, for example, in the formation design of multi-robot systems and unmanned aerial vehicles (UAVs)

    The ε3 and ε4 Alleles of Human APOE Differentially Affect Tau Phosphorylation in Hyperinsulinemic and Pioglitazone Treated Mice

    Get PDF
    Impaired insulin signalling is increasingly thought to contribute to Alzheimer's disease (AD). The ε4 isoform of the APOE gene is the greatest genetic risk factor for sporadic, late onset AD, and is also associated with risk for type 2 diabetes mellitus (T2DM). Neuropathological studies reported the highest number of AD lesions in brain tissue of ε4 diabetic patients. However other studies assessing AD pathology amongst the diabetic population have produced conflicting reports and have failed to show an increase in AD-related pathology in diabetic brain. The thiazolidinediones (TZDs), peroxisome proliferator-activated receptor gamma agonists, are peripheral insulin sensitisers used to treat T2DM. The TZD, pioglitazone, improved memory and cognitive functions in mild to moderate AD patients. Since it is not yet clear how apoE isoforms influence the development of T2DM and its progression to AD, we investigated amyloid beta and tau pathology in APOE knockout mice, carrying human APOEε3 or ε4 transgenes after diet-induced insulin resistance with and without pioglitazone treatment.Male APOE knockout, APOEε3-transgenic and APOEε4-transgenic mice, together with background strain C57BL6 mice were kept on a high fat diet (HFD) or low fat diet (LFD) for 32 weeks, or were all fed HFD for 32 weeks and during the final 3 weeks animals were treated with pioglitazone or vehicle.All HFD animals developed hyperglycaemia with elevated plasma insulin. Tau phosphorylation was reduced at 3 epitopes (Ser396, Ser202/Thr205 and Thr231) in all HFD, compared to LFD, animals independent of APOE genotype. The introduction of pioglitazone to HFD animals led to a significant reduction in tau phosphorylation at the Ser202/Thr205 epitope in APOEε3 animals only. We found no changes in APP processing however the levels of soluble amyloid beta 40 was reduced in APOE knockout animals treated with pioglitazone
    corecore